Cho hàm số \(y = f(x)\) liên tục trên đoạn \([ - 1;3]\) và có đồ thị hình bên. Hỏi phương trình \(7f(x) - 5 = 0\) có bao nhiêu nghiệm trên đoạn \([ - 1;3]\) ? A.\(2.\) B.\(1.\) C.\(3.\) D.\(0.\)
Phương pháp giải: Số nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\) chính là số giao điểm của hai đồ thị hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) Giải chi tiết: Ta có : \(7f\left( x \right) - 5 = 0 \Leftrightarrow f\left( x \right) = \dfrac{5}{7}\) Đường thẳng \(y = \dfrac{5}{7}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 2 điểm phân biệt nên phương trình \(7f\left( x \right) - 5 = 0\) có hai nghiệm phân biệt trên \(\left[ { - 1;3} \right]\) Chọn A.