Đáp án đúng: C Giải chi tiết: Gọi \(H\) là trung điểm của \(BC.\)Khi đó \(SH\bot BC.\) Vì \(\left( SBC \right)\bot \left( ABC \right)\) nên \(SH\bot \left( ABC \right).\) Kẻ \(SK\bot AC\). Vì \(SH\bot AC\) nên \(AC\bot \left( SHK \right)\Rightarrow \left( SAC \right)\bot \left( SHK \right).\) Kẻ \(HI\bot SK\,\,\left( I\in SK \right)\Rightarrow HI\bot \left( SAC \right).\) Ta có: \(\frac{HC}{BC}=\frac{d\left( H;\left( SAC \right) \right)}{d\left( B;\left( SAC \right) \right)}=\frac{1}{2}\Rightarrow d\left( B,\left( SAC \right) \right)=2d\left( H,\left( SAC \right) \right)=2HI.\) Ta có \(HK=HC\sin \widehat{C}=\frac{a}{2}.\frac{\sqrt{3}}{2}=\frac{a\sqrt{3}}{4}.\) Tam giác SBC đều cạnh a \(\Rightarrow SH=\frac{a\sqrt{3}}{2}.\) Xét tam giác SHK vuông tại H có đường cao HI ta có: \(\begin{array}{l}\frac{1}{{H{I^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{K^2}}} = \frac{1}{{\frac{{3{a^2}}}{4}}} + \frac{1}{{\frac{{3{a^2}}}{{16}}}} = \frac{{20}}{{3{a^2}}} \Rightarrow HI = \frac{{a\sqrt {15} }}{{10}}\\ \Rightarrow d\left( {B,\left( {SAC} \right)} \right) = \frac{{a\sqrt {15} }}{5}.\end{array}\) Chọn đáp án C.