Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh \(a\sqrt{2}\), AA’ = 2a. Tính khoảng cách d giữa hai đường thẳng BD và CD’. A.\(d=a\sqrt{2}.\) B. \(d=2a.\) C. \(d=\frac{2a\sqrt{5}}{5}.\) D. \(d=\frac{a\sqrt{5}}{5}.\)
Đáp án đúng: C Giải chi tiết: Gọi I là điểm đối xứng của A qua D, suy ra BCID là hình bình hành nên BD // CI Do đó \(d\left( BD;CD' \right)=d\left( BD;\left( CD'I \right) \right)=d\left( D;\left( CD'I \right) \right).\) Kẻ \(DE\bot CI\) tại E, kẻ \(DK\bot D'E\,\,\left( 1 \right)\) ta có: \(\left\{ \begin{array}{l}CI \bot DE\\CI \bot DD'\end{array} \right. \Rightarrow CI \bot \left( {DD'E} \right) \Rightarrow CI \bot DK\,\,\left( 2 \right)\) Từ (1) và (2) \(\Rightarrow DK\bot \left( CD'I \right)\Rightarrow d\left( D;\left( CD'I \right) \right)=DK.\) Xét tam giác IAC, ta có DE // AC (do cùng vuông góc với CI) và có D là trung điểm của AI nên suy ra DE là đường trung bình của tam giác ACI. Suy ra \(DE=\frac{1}{2}AC=\frac{a\sqrt{2}}{\sqrt{2}}=a.\) Tam giác vuông \(D'DE\), có \(DK=\frac{D'D.DE}{\sqrt{D'{{D}^{2}}+D{{E}^{2}}}}=\frac{2a.a}{\sqrt{4{{a}^{2}}+{{a}^{2}}}}=\frac{2a\sqrt{5}}{5}.\) Chọn C.