Đáp án:
\({V_{C.IKJ}} = \frac{5}{4}\)
Giải thích các bước giải:
\(\begin{array}{l}
\frac{{{V_{ABC.A'B'C'}}}}{{{V_{ABC.IJK}}}} = \frac{{AA'}}{{AI}}.\frac{{BB'}}{{BJ}}.\frac{{CC'}}{{CK}} = 2.2.2 = 8\\
\to {V_{ABC.IJK}} = \frac{{30}}{8} = \frac{{15}}{4}\\
{V_{C.IKJ}} = \frac{1}{3}.d(C,(IJK)).{S_{JIK}} = \frac{1}{3}.{V_{ABC.IJK}} = \frac{5}{4}
\end{array}\)