Đáp án đúng: B
Phương pháp giải:
Sử dụng công thức tính thể tích khối chóp có chiều cao \(h\), diện tích đáy \(B\) là \(V = \dfrac{1}{3}Bh\).
Giải chi tiết:
Gọi \(E,\,\,F,\,\,G,\,\,H\) lần lượt là trung điểm của \(BB',\,\,AA',\,\,DD',\,\,CC'\), khi đó ta có \(\left( {EFGH} \right) \equiv \left( {MNPQ} \right)\).
Gọi \(O\) là tâm hình lập phương, khi đo \(O\) là trung điểm của \(RS\) và \(RS \bot \left( {MNPQ} \right)\) tại \(O\).
Ta có:
\(\begin{array}{l}{V_{RSMNPQ}} = {V_{R.MNPQ}} + {V_{S.MNPQ}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}RO.{S_{MNPQ}} + \dfrac{1}{3}SO.{S_{MNPQ}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}RS.{S_{MNPQ}}\end{array}\)
Do \(EFGH\) là hình vuông cạnh \(a\) nên \(MN = NP = \dfrac{1}{2}EG = \dfrac{{a\sqrt 2 }}{2}\).
\( \Rightarrow {S_{MNPQ}} = MN.NP = \dfrac{{{a^2}}}{2}\), \(RS = a\).
Vậy \({V_{RS.MNPQ}} = \dfrac{1}{3}.a.\dfrac{{{a^2}}}{2} = \dfrac{{{a^3}}}{6}\).
Chọn B.