Biết \(\widehat {CF{\rm{E}}} = {55^0},\,\widehat {{E_1}} = {125^0}\) . Khi đó: A.\(\widehat {AEF} = 125^\circ \) B. C.Cả A, B đều đúng D.Cả A, B đều sai
Phương pháp giải: Áp dụng dấu hiệu nhận biết hai đường thẳng song song: Nếu đường thẳng \(c\) cắt hai đường thẳng \(a\) và \(b,\) trong các góc tạo thành có \(1\) cặp góc so le trong bằng nhau thì \(a//b\). Giải chi tiết: Vì \(\widehat {{E_1}}\) và \(\widehat {BEF}\) là hai góc kề bù (gt) \( \Rightarrow \widehat {{E_1}} + \widehat {BEF} = {180^0} \Rightarrow \widehat {BEF} = {180^0} - \widehat {{E_1}} = {180^0} - {125^0} = {55^0} \Rightarrow \widehat {BEF} = \widehat {CFE} = {55^0}\) Mà \(\widehat {BEF}\)và \(\widehat {CFE}\) là hai góc so le trong nên suy ra \(AB//C{\rm{D}}\) (dấu hiệu nhận biết hai đường thẳng song song) Chọn B.