Cho một điểm C di động trên đường tròn tâm O, đường kính AB = 2R. I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc với AB tại H.
1. Vẽ CM song song với BI (M thuộc AI); lấy điểm F thuộc AB sao cho AC = AF. Tính CMF.
2. P thuộc tia đối của tia AC sao cho AP = AC; Q là trung điểm của HB. Chứng minh rằng PH vuông góc với CQ.
3. K tâm đường tròn nội tiếp tam giác AHC; CK cắt AB tại E. Tìm vị trí của C trên cung AB để diện tích tam giác CEF đạt giá trị lớn nhất.
4. Chứng minh rằng MH, BI, CF đồng quy
Giúp mik câu 2 thôi cảm ơn mn