Giải thích các bước giải:
Vì $x_1^2+x_2^2=0$
mà $x_1^2\ge 0, x_2^2\ge 0\rightarrow x_1^2+x_2^2\ge 0\rightarrow x_1=x_2=0$
Để phương trình có 2 nghiệm thỏa mãn đề
$\begin{cases}x_1+x_2=0\\ x_1.x_2=0\end{cases}$
$\rightarrow \begin{cases}2(m-1)=0\\m^2-3m=0\end{cases}$
$\rightarrow$ Phương trình vô nghiệm
$\rightarrow $Không tồn tại m thỏa mãn đề