Đáp án:
$m \in \left[ {0;5} \right]\backslash \left\{ 1 \right\}$
Giải thích các bước giải:
Ta có:
Phương trình $\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m = 0$ có hai nghiệm $x_1;x_2$ phân biệt
$\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
m - 1 \ne 0\\
\Delta ' > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 1\\
{\left( { - \left( {m + 1} \right)} \right)^2} - \left( {m - 1} \right)m > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 1\\
{m^2} + 2m + 1 - {m^2} + m > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 1\\
3m + 1 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 1\\
m > \dfrac{{ - 1}}{3}
\end{array} \right.\left( 1 \right)
\end{array}$
Khi đó:
Theo ĐL Viet ta có: $\left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{2\left( {m + 1} \right)}}{{m - 1}}\\
{x_1}{x_2} = \dfrac{m}{{m - 1}}
\end{array} \right.$
Như vậy:
$\begin{array}{l}
\left| {{x_1} - {x_2}} \right| \ge 2\\
\Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2} \ge 4\\
\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} \ge 4\\
\Leftrightarrow {\left( {\dfrac{{2\left( {m + 1} \right)}}{{m - 1}}} \right)^2} - 4.\dfrac{m}{{m - 1}} \ge 4\\
\Leftrightarrow \dfrac{{{{\left( {m + 1} \right)}^2} - m\left( {m - 1} \right) - {{\left( {m - 1} \right)}^2}}}{{{{\left( {m - 1} \right)}^2}}} \ge 0\\
\Leftrightarrow {\left( {m + 1} \right)^2} - m\left( {m - 1} \right) - {\left( {m - 1} \right)^2} \ge 0\\
\Leftrightarrow {m^2} + 2m + 1 - {m^2} + m - {m^2} + 2m - 1 \ge 0\\
\Leftrightarrow - {m^2} + 5m \ge 0\\
\Leftrightarrow m\left( { - m + 5} \right) \ge 0\\
\Leftrightarrow 0 \le m \le 5\left( 2 \right)
\end{array}$
Từ $\left( 1 \right),\left( 2 \right) \Rightarrow m \in \left[ {0;5} \right]\backslash \left\{ 1 \right\}$
Vậy $m \in \left[ {0;5} \right]\backslash \left\{ 1 \right\}$