đặt : \(AB=c\) ; \(AC=b\) ; \(BC=a\) và \(AH=h_a\)
ta có : \(\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(30+50\right)=100\)
ta lại có : \(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Leftrightarrow\dfrac{15}{sin100}=\dfrac{b}{sin30}\Leftrightarrow b=\dfrac{15}{sin100}.sin30\)
\(\Leftrightarrow b\simeq7,62\)
và \(\dfrac{a}{sinA}=\dfrac{c}{sinC}\Leftrightarrow\dfrac{15}{sin100}=\dfrac{c}{sin50}\Leftrightarrow c=\dfrac{15}{sin100}.sin50\)
\(\Leftrightarrow c\simeq11,67\)
ta có : \(S_{\Delta ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}.15.\left(11,67\right).sin30=\dfrac{3501}{80}\)
ta có : \(S_{\Delta ABC}=\dfrac{1}{2}a.h_a\Leftrightarrow\dfrac{3501}{80}=\dfrac{1}{2}.15.h_a\Leftrightarrow h_a=\dfrac{3501}{80}.\dfrac{2}{15}=\dfrac{1167}{200}\)
vậy \(AH=\dfrac{1167}{200}=5,835\)