Giải thích các bước giải:
a, E là trung điểm của AB, F là trung điểm của AC ⇒ EF là đường trung bình của ΔABC
⇒ EF ║ BC ⇒ Tứ giác BEFC là hình thang
ΔABC cân tại A ⇒ $\widehat{B}$ = $\widehat{C}$
Hình thang BEFC có 2 góc kề 1 cạnh đáy bằng nhau
⇒ BEFC là hình thang cân (đpcm)
b, ΔABC cân tại A có AH là trung tuyến ⇒ AH cũng là đường cao hay AH ⊥ HC
Tứ giác AHCD có 2 đường chéo AC, HD cắt nhau tại F là trung điểm của mỗi đường
⇒ AHCD là hình bình hành mà AH ⊥ HC ⇒ AHCD là hình chữ nhật (đpcm)
c, AHCD là hình chữ nhật ⇒ AD ║ CH và AD = CH mà HB = HC ⇒ AD ║ HB và AD = HB
⇒ Tứ giác ABHD là hình bình hành ⇒ AH, BD giao nhau tại trung điểm của mỗi đường
Mặt khác ta có I là trung điểm của AH (Vì I ∈ EF là đường trung bình của ΔABC)
nên I cũng là trung điểm của BD hay B, I, D thẳng hàng (đpcm)