Cho tam giác ABC có các đường phân giác trong của tam giác cắt nhau tại O. Kẻ $ OD\bot BC $ $ (D\in BC\,) $ . Kết quả so sánh nào sau đây là đúng? A. $ OD > OA $ . B. $ OD=OA. $ C. $ OD < OA. $ D. $ OD\ge OA. $
Đáp án đúng: C Kẻ $ \,OE\bot AB $ $ (E\in AB) $ . Vì O là giao điểm của các đường phân giác trong tam giác ABC nên $ OE=OD $ . (1) Xét tam giác AEO vuông tại E có OA là cạnh huyền $ \Rightarrow \,\,OE < OA $ . (2) Từ (1) và (2) suy ra $ OD < OA. $