Cho tam giac ABC co do dai ba canh la a, b, c va chu vi bang 1. Chung minh:
a2 +b2+c2 +4abc > 13/27
Lời giải:
Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)
\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)
Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)
Ta có:
\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)
Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)
Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.
So sánh
a/ \(99^{20}và9999^{10}\)
b/ \(3^{21}\) và \(2^{31}\)
c/ \(2^{30}+3^{30}+4^{30}\) và \(3.24^{10}\)
Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD có tâm \(O\left(\frac{7}{3};\frac{3}{2}\right)\). Điểm \(M\left(6;6\right)\) thuộc cạnh AB và \(N\left(8;-2\right)\) thuộc cạnh BC. Tìm tọa độ các đỉnh của hình vuông
Giải hệ phương trình :
\(\begin{cases}\sqrt{2x-y-1}+\sqrt{3y+1}=\sqrt{x}+\sqrt{x+2y}\left(1\right)\\x^3-3x+2=2y^2-y^2\left(2\right)\end{cases}\)
Chứng minh rằng nếu x, y là các số thực dương thì : \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\)
Nêu các định lý về vectơ
\(\begin{cases}27x^2+3x+\left(9y-7\right)\sqrt{6-9y}=0\\\frac{x^2}{3}+y^2+\sqrt{2-3x}-\frac{109}{81}=0\end{cases}\) \(\left(x;y\in R\right)\)
tam giác ABC ,B(2;0),C(-3;5), G là trọng tâm của tam giác ABC, G thuộc d:2x+y-1=0, Stam giác =5/2.Tìm tọa độ điểm A?
trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC cân tại A và M là trung điểm cạnh AB. biết I( 8/3;1;3) là tâm đường tròn ngoại tiếp tam giác ABC và G (3;0), K( 7/3;1/3) lần lượt là trọng tâm của các tam giác ABC và ACM tìm tọa độ A, B , C
Giúp dùm em với mấy anh chị
trong mp OXY, cho hình thang cân ABCD có đáy lớn CD có diện tích bằng 45/2, CD: x-3y-3=0. Hai đường chéo AC và BD vuông góc với nhau tại I(2;3) viết phương trình BC biết C có hoành độ dương
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến