Cho trước 2 điểm \(A\left(-2;-3\right);B\left(1;-2\right)\)
Đường thẳng \(\Delta:2x-3y+6=0\)
Tìm C trên \(\Delta\) sao cho \(\left|CA-CB\right|\) lớn nhất
Co A B
Vì \(2.\left(-2\right)-3+6=11>0\)
và \(2.1-3\left(-2\right)+6=14>0\) nê A,B cùng phía đối với \(\Delta\). Khi đó mọi \(C\in\Delta\) đều có :
\(\left|CA-CB\right|\le\left|C_0A-C_0B\right|=AB\)
Dấu đẳng thức xảy ra khi và chỉ khi \(C\) trùng với \(C_0\) là giao điểm của đường thẳng AB với \(\Delta\). Do đó tọa độ của điểm C cần tì là nghiệm của hệ phương trình :
\(\begin{cases}2x-3y+6=0\\\frac{x+y}{3}=\frac{y+3}{1}\end{cases}\)
Giải hệ ta được \(\left(x;y\right)=\left(-13;-\frac{20}{3}\right)\) vậy điểm cần tìm là \(C=\left(-13;-\frac{20}{3}\right)\)
Cho tam giác ABC cân tại A, có đường cao CH cắt tia phân giác góc A tại D. chứng minh BD vuông góc AC.
Cho a, b, c là các số thực dương thỏa mãn \(4\left(a^3+b^3\right)+c^3=2\left(a+b+c\right)\left(ac+bc-2\right)\)
Tìm giá trị lớn nhất của \(P=\frac{2a^2}{3a^2+b^2+2ac\left(c+2\right)}+\frac{b+c}{a+b+c+2}-\frac{\left(a+b\right)^2+c^2}{16}\)
Giải hệ phương trình :
\(\begin{cases}3\sqrt{y^3\left(2x-y\right)}+\sqrt{x^2\left(5y^2-4x^2\right)}=4y^2\left(1\right)\\\sqrt{2-x}+\sqrt{y+1}+2=x+y^2\left(2\right)\end{cases}\)
Trong mặt phẳng với hệ trục tọa độ Oxy cho hình bình hành ABCD có góc ABC nhọn, đỉnh A(-2;-1). Gọi H, K, E lần lượt là hình chiếu vuông góc của A trên các đường thẳng BC, BD, CD. Phương trình đường tròn ngoại tiếp HKE là (C) : \(x^2+y^2+x+4y+3=0\). Tìm tọa độ các đỉnh B, C, D biết H có hoành độ âm, C có hoành độ dương và nằm trên đường thẳng \(x-y-3=0\)
Cho \(a\in\left[1;2\right]\), chứng minh rằng : \(\left(2^a+3^a+4^a\right)\left(6^a+8^a+12^a\right)<24^{a+1}\)
\(\begin{cases}x^2+\left(y^2-y-1\right)\sqrt{x^2+2}-y^3+y+2=0\left(1\right)\\\sqrt[3]{y^2-3}-\sqrt{xy^2-2x-2}+x=0\left(2\right)\end{cases}\) \(\left(x,y\in R\right)\)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có N là trung điểm của cạnh CD và đường thẳng BN có phương trình là \(13x-10y+13=0\), điểm \(M\left(-1;2\right)\) thuộc đoạn thẳng AC sao cho AC=4AM. Gọi H là điểm đối xứng với N qua C. Tìm tọa độ các đỉnh A, B, C, D biết rằng 2AC=2AB và điểm H thuộc đường thẳng \(\Delta:2x-3y=0\)
Cho tam giác ABC có diện tích \(S=8\), hai đỉnh \(A\left(1;-2\right);B\left(2;3\right)\)
Tìm tọa độ đỉnh C, biết đỉnh C, biết rằng đỉnh C nằm trên đường thẳng \(d:2x+y-2=0\)
Viết phương trình của phân giác góc nhọn tạo bởi đường thẳng
\(d_1:4x+3y-5=0\)
\(d_2:\begin{cases}x=-2-4t\\y=2+3t\end{cases}\) \(\left(t\in R\right)\)
Trong mặt phẳng hệ tọa độ Oxy, cho hình vuông ABCD và điểm E thuộc cạnh BC. Một đường thẳng qua A vuông góc với AE cắt CD tại F. Đường thẳng chứa đường trung tuyến AM của tam giác AEF cắt CD tại K. Tìm tọa độ điểm D biết A(-6;6). M(-4;2) và K(-3;0)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến