A B C D o H a c b
Đặt \(\overrightarrow{AB}=\overrightarrow{a}\), \(\overrightarrow{AC}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\)
Với \(\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|=a\) và \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=\frac{a^2}{2}\) (như trong hình vẽ)
Do hình chóp đã cho là hình chóp đều, nên H là trọng tâm của tam giác BCD, do đó :
\(\overrightarrow{AH}=\frac{1}{3}\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)\)
Suy ra \(\overrightarrow{AO}=\frac{1}{6}\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)\)
Vậy : \(\overrightarrow{OB}=\frac{1}{6}\left(-\overrightarrow{a}+\overrightarrow{5b}-\overrightarrow{c}\right)\) Và \(\overrightarrow{OC}=\frac{1}{6}\left(-\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}\right)\)
Từ đó :
\(36.\overrightarrow{OB}.\overrightarrow{OC}=\left(-\overrightarrow{a}+5\overrightarrow{b}-\overrightarrow{c}\right)\left(-\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}\right)\)
\(=\overrightarrow{a^2}^{ }+\overrightarrow{a}.\overrightarrow{b}-5\overrightarrow{a}.\overrightarrow{c}-5\overrightarrow{b}.\overrightarrow{a}-5\overrightarrow{b^2}^{ }+25\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{b}-5\overrightarrow{c^2}\)
\(=\overrightarrow{a^2}-4\overrightarrow{a}.\overrightarrow{b}+26\overrightarrow{b}.\overrightarrow{c}-4\overrightarrow{c}.\overrightarrow{a}-5\overrightarrow{b^2}^{ }-5\overrightarrow{c^2}\)
\(=a^2-2a^2+13a^2-2a^2-10a^2=0\)
Suy ra \(OB\perp OC\)
Chứng minh tương tự ta cũng được \(OC\perp OD,OD\perp OB\)