Chẳng nhẽ không được chọn
Đặt \(A=\frac{11}{n-2}.\frac{n}{7}=\frac{11n}{\left(n-2\right).7}=\frac{11n}{7n-14}\)
Để \(\frac{11n}{7n-14}\) có GTN thì 11n phải chia hết cho 7n-14
=>77n chia hết cho 7n-14 (1)
Ta lại có:
7n-14 chia hết cho 7n-14
=> 11(7n-14) chia hết cho 7n-14
=> 77n - 154 chia hết cho 7n-14 (2)
Trừ (1) cho (2) ta đc:
(77n) - (77n - 154) chia hết cho 7n-14
=> 154 chia hết cho 7n-14
\(\Rightarrow7n-14\inƯ\left(154\right)\)
\(\Rightarrow7n-14\in\left\{1;-1;2;-2;7;-7;11;-11\right\}\)
\(\Rightarrow7n\in\left\{15;13;16;12;21;7;25;3\right\}\)
\(\Rightarrow n\in\left\{3;2\right\}\)
Vậy n = 3 hoặc n = 2
Tốn công lắm nha !