Cho tứ diện OABC có cạnh OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC = a. Gọi K, M, N lần lượt là trung điểm của AB, BC, CA và E là điểm đối xứng của O qua K. Gọi I là giao điểm của CE với mặt phẳng (OMN) (1). Chứng minh CE vuông góc với mặt phẳng (OMN) (2). Tính diện tích tứ giác OMIN theo a.
A.S = (đvdt)
B.S = (đvdt)
C.S = (đvdt)
D.S = (đvdt)