$x^{3}$ +$y^{3}$ +3xy($x^{2}$ +$y^{2}$ )+6$x^{2}$ $y^{2}$ (x+y)
= (x+y)($x^{2}$ -xy+$y^{2}$ )+3$x^{3}$ y+3x$y^{2}$ +6$x^{2}$ $y^{2}$ (do x+y=1)
= $x^{2}$ -xy+$y^{2}$ +3$x^{3}$ y+3x$y^{3}$ +6$x^{2}$ $y^{2}$
= $(x+y)^{2}$ -3xy+3$x^{3}$y+3x $y^{3}$ +6$x^{2}$ $y^{2}$
= 1-3xy + 3$x^{2}$y(x+y) + 3x $y^{2}$ (x+y)
= 1 - 3xy + 3$x^{2}$y + 3x $y^{2}$
= 1 + 3xy ( -1 +xy)
= 1 + 3xy ( -1 +1)
= 1