a) Giải phương trình: \(4{x^2} - 3x - 2 = \sqrt {x + 2} .\)
b) Giải hệ phương trình: \(\left\{ \begin{array}{l}xy - x - y = - 5\\\dfrac{1}{{{x^2} - 2x}} + \dfrac{1}{{{y^2} - 2y}} = \dfrac{2}{3}\end{array} \right..\)
A.\(\begin{array}{l}a)\,\,\dfrac{{5 \pm \sqrt {41} }}{8};\,\,x = \dfrac{{1 \pm \sqrt {33} }}{8}\\b)\,\,\left( { - 1;3} \right);\,\,\left( {3; - 1} \right)\end{array}\)
B.\(\begin{array}{l}a)\,\,\dfrac{{5 + \sqrt {41} }}{8};\,\,x = \dfrac{{1 - \sqrt {33} }}{8}\\b)\,\,\left( { - 1;3} \right);\,\,\left( {3; - 1} \right)\end{array}\)
C.\(\begin{array}{l}a)\,\,\dfrac{{5 - \sqrt {41} }}{8};\,\,x = \dfrac{{1 - \sqrt {33} }}{8}\\b)\,\,\left( {1;3} \right);\,\,\left( {3;1} \right)\end{array}\)
D.\(\begin{array}{l}a)\,\,\dfrac{{5 \pm \sqrt {41} }}{8};\,\,x = \dfrac{{1 \pm \sqrt {33} }}{8}\\b)\,\,\left( {1; - 3} \right);\,\,\left( { - 3;1} \right)\end{array}\)