Đặt:
`S = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100`
`3S = 3 . ( 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100)`
`3S = 1 - 2/3 + 3/3^2 - 4/3^3 + ... + 99/3^98 - 100/3^99`
`3S + S = (1 - 2/3 + 3/3^2 - 4/3^3 + ... + 99/3^98 - 100/3^99) + (1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100)`
`4S = 1 - 2/3 + 3/3^2 - 4/3^3 + ... + 99/3^98 - 100/3^99 + 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100`
`4S = 1 - 1/3 + 1/3^2 - 1/3^3 + 1/3^4 - ... + 1/3^99 - 100/3^100`
`=> 4S < 1 - 1/3 + 1/3^2 - 1/3^3 + 1/3^4 - ... + 1/3^98 - 1/3^99`
Lại có:
Đặt:
`A = 1 - 1/3 + 1/3^2 - 1/3^3 + 1/3^4 - ... + 1/3^98 - 1/3^99`
`3A = 3 . (1 - 1/3 + 1/3^2 - 1/3^3 + 1/3^4 - ... + 1/3^98 - 1/3^99)`
`3A = 3 - 1 + 1/3 - 1/3^2 + 1/3^3 - ... + 1/3^97 - 1/3^98`
`3A + A = (3 - 1 + 1/3 - 1/3^2 + 1/3^3 - ... + 1/3^97 - 1/3^98) - (1 - 1/3 + 1/3^2 - 1/3^3 + 1/3^4 - ... + 1/3^98 - 1/3^99)`
`4A = 3 - 1/3^99`
`=> 4S < 4A = 3 - 1/3^99`
`4S < (3 - 1/3^99)/4`
`4S < 3/4 - 1/(3^99 . 4)`
`S < 3/4 - 1/(3^99 . 4)`
`=> S < 3/4`
Vậy `1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100 < 3/4`