`Đáp án:
CHÚC BẠN HỌC TỐT !!!!!!!!!
Giải thích các bước giải:
$\text{Ta có:}$
`\sqrt{2017} < \sqrt{2018}`
`⇔ \frac{1}{\sqrt{2017}} > \frac{1}{\sqrt{2018}}`
`⇔ \frac{1}{\sqrt{2017}} - \frac{1}{\sqrt{2018}} > 0`
`⇔ \frac{2018 - 2017}{\sqrt{2017}} - \frac{2018 - 2017}{\sqrt{2018}} > 0`
`⇔ \frac{2018}{\sqrt{2017}} - \sqrt{2017} - \sqrt{2018} + \frac{2017}{\sqrt{2018}} > 0`
`⇔ \frac{2017}{\sqrt{2018}} + \frac{2018}{\sqrt{2017}} > \sqrt{2017} + \sqrt{2018}`
Vậy `\frac{2017}{\sqrt{2018}} + \frac{2018}{\sqrt{2017}} > \sqrt{2017} + \sqrt{2018}.`