$VT=\sqrt{\sin^4x+4(1-\sin^2x)}+\sqrt{\cos^4+4(1-\cos^2x)}$
$=\sqrt{(\sin^2x)^2-4\sin^2x+4}+\sqrt{(\cos^2x)^2-4\cos^2x+4}$
$=\sqrt{(\sin^2x-2)^2}+\sqrt{(\cos^2x-2)^2}$
$=|\sin^2x-2|+|\cos^2x-2|$
Ta có $\sin^2x\in[0;1]\to \sin^2x-2\in[-2;-1]$
$\to \sin^2x-2<0\quad\forall x$
Tương tự, $\cos^2x-2<0\quad\forall x$
$\to VT=-\sin^2x+2-\cos^2x+2$
$=2+2-(\sin^2x+\cos^2x)$
$=4-1$
$=3$
$=VP$ (đpcm)