Chứng minh rằng : Với hai số dương a,b thì a+b ≥ 2√ab
Với 2 số dương a,b ta có:
(√a - √b )2 ≥ 0 ⇔ a - 2√ab +b ≥ 0 ⇔ a+b≥ 2√ab
dấu "=" xảy ra khi và chỉ khi a=b
vậy ta có dpcm
Ta có :
(với a,b>0)
cho a,b,c>0 thoả mãn abc=1
cmr:
\(\sum\sqrt[4]{\dfrac{a+b}{c+1}}\) >=3
Biết \(\sin\alpha=\dfrac{5}{13}\)
tính : \(B=\dfrac{\cot\alpha-\cos\alpha}{\cos^3\alpha}\)
Cho đoạn thẳng AB, xát định điểm M sao cho |\(\overrightarrow{MA}\)+\(\overrightarrow{MB}\)|=\(\sqrt{3}\)
Cho a;b;c>0 Chứng minh rằng: \(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge\dfrac{a+b+c}{2}\)
Tìm GTNN của P=(x+3)^2+(x-1)^2+2008
liệt kê các phần tử các tập hợp sau
\(A=\left\{x\in R|2x^3-5x+3=0\right\}\)
\(B=\left\{x\in Q|x=\dfrac{1}{2^a},a\in N,x\ge\dfrac{1}{8}\right\}\)
C là tập hợp các số chính phương k vượt qua 400
giải phương trình :
\(\sqrt{3x-2}-\sqrt{x+1}=2x^2-x-3\)
giúp mình với nhá
cho hình bình hành abcd có tâm o. hãy xác định các điểm i,f,k thỏa mãn đẳng thức :
a) vecto IA+ vecto IB + vecto IC =4 vecto ID
b) 2vecto FA +2 vecto FB = 3 vecto FC - vecto FD
c)4 vecto KA +3 vecto KB +2 vecto KC + vecto KD = vecto 0
cho \(\sum x^2+xyz=4\); với x,y,z >0 tìm min của
P=\(\sum\dfrac{x^4}{xy+z}+\dfrac{\sum x^6}{6}\)
1, cho cos an pha = \(\dfrac{3}{4}\) . Tính sin an pha , tan an pha , cot an pha
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến