Đặt \(A=x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\)
\(=\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}+\left(y+1\right)-1\)
Áp dụng BĐT Cô-si cho 2 số dương ta có :
\(\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge2\sqrt{\dfrac{\left(x-y\right).4}{\left(x-y\right)\left(y+1\right)^2}}=\dfrac{4}{y+1}\)
Xảy ra khi : \(\left(x-y\right)\left(y+1\right)=2\) ( do \(a,b>0\))
\(\Rightarrow A\ge\dfrac{4}{y+1}+\left(y+1\right)-1\)
Sử dụng Cô-Si lần nữa, ta có :
\(\dfrac{4}{y+1}+\left(y+1\right)\ge2\sqrt{\dfrac{4}{y+1}\left(y+1\right)}=2.2=4\)
Xảy ra khi \(\left(y+1\right)^2=4\Leftrightarrow y=1\)
Từ đây ta có thể thấy : \(A\ge4-1=3\)
Dấu "=" xảy ra khi \(\left(x-y\right)\cdot\left(y+1\right)=2\) và \(y=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right..\)
Bài này hồi lúc cũng không biết làm, h biết truyền lại cho bạn :D