Giải thích các bước giải:
Giả sử $A=\{a_1, a_2, .., a_n, c_1, c_2, .., c_m\}\to n(A)=n+m$
$B=\{b_1, b_2, ..., b_k, c_1, c_2, .., c_m\}\to n(B)=k+m$
$\to A\cap B=\{c_1, c_2,..,c_m\}\to n(A\cap B)=m$
$A\cup B=\{a_1, a_2, .., a_n, c_1, c_2, .., c_m,b_1, b_2, ..., b_k\}\to n(A\cup B)=n+m+k$
$\to n(A\cap B)+n(A\cup B)=m+(n+m+k)=m+n+m+k=(n+m)+(k+m)=n(A)+n(B)$