\(\forall x_1;x_2\in\left(1;+\infty\right)\) và \(1< x_1< x_2\)
ta có : \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\sqrt{x_1-1}-\sqrt{x_2-1}}{x_1-x_2}\)
ta có : \(x_2>x_1\) \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2< 0\\x_2-1>x_1-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2< 0\\\sqrt{x_2-1}>\sqrt{x_1-1}\end{matrix}\right.\)