Đáp án:
↓↓↓↓
Giải thích các bước giải:
`(x+1)(x-1)(3x-6) > 0`
⇔ \(\left[ \begin{array}{l}x + 1 > 0\\x - 1 >0\\3x-6>0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x > 0\\x > 1\\3x > 6\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x > 0\\x > 1\\x > 2\end{array} \right.\)
`3x(2x+7)(4-5x) ≥ 0`
⇔ \(\left[ \begin{array}{l}3x ≥ 0\\2x+7 ≥ 0\\4-5x ≥ 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x ≥ 0\\2x ≥ -7\\-5x ≥ -4\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x ≥ 0\\x ≥ \frac{-7}{2}\\x ≥ \frac{4}{5}\end{array} \right.\)