Xét hàm \(y=\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\) . Ta có:
\(y'=\frac{2x-1}{2\sqrt{x^2-x+1}}+\frac{2x+1}{2\sqrt{x^2+x+1}}=0\Leftrightarrow x=0\) ( bạn có thể giải PT này bằng cách quy đồng kết hợp với liên hợp)
Ta thấy rằng \(x\mapsto \infty \Rightarrow y\mapsto +\infty \) nên hàm không tồn tại max. Do đó hàm $y$ đạt min tại $x=0$, tức là \(y_{min}=2\)
Suy ra BPT trên luôn đúng với mọi $x$ thuộc tập xác định, tức là với mọi $x\in\mathbb{R}$