`a)` `(sinx-cosx)^3=1+sinx cosx` $(1)$
$\\$
Đặt `t=sinx-cosx`
`=\sqrt{2}.(\sqrt{2}/2 sinx-\sqrt{2}/2cosx)`
`=\sqrt{2}.(cos\ π/4sinx-sin\ π/4 cosx)`
`=\sqrt{2}sin(x-π/4)`
Vì `|sin(x-π/4)|\le 1`
`=>| t|\le \sqrt{2}`
$\\$
`\qquad t^2=(sinx-cosx)^2`
`=>t^2=sin^2x+cos^2x-2sinx cosx`
`=>t^2=1-2sinx cosx`
`=>sinx cosx ={1-t^2}/2`
$\\$
`(1)<=>t^3=1+{1-t^2}/2`
`<=> t^3={2+1-t^2}/2`
`<=>2t^3=3-t^2<=>2t^3+t^2-3=0`
`<=>2t^3-2t^2+3t^2-3=0`
`<=>2t^2(t-1)+3(t+1)(t-1)=0`
`<=>(t-1)(2t^2+3t+3)=0`
`<=>`$\left[\begin{array}{l}t=1\\2t^2+3t+3=0\ (vô\ nghiệm)\end{array}\right.$
$\\$
`t=1<=>\sqrt{2}sin(x-π/4)=1`
`<=>sin(x-π/4)=1/\sqrt{2}=sin \ π/4`
`<=>`$\left[\begin{array}{l}x-\dfrac{π}{4}=\dfrac{π}{4}+k2π\\x-\dfrac{π}{4}=π-\dfrac{π}{4}+k2π\end{array}\right.$`(k\in ZZ)`
`<=>`$\left[\begin{array}{l}x=\dfrac{π}{2}+k2π\\x=π+k2π\end{array}\right.$`(k\in ZZ)`
$\\$
Vậy phương trình đã cho có họ nghiệm:
`\qquad x=π/2+k2π; x=π+k2π\ (k\in ZZ)`
`b)` `sin^3x+cos^3x=1`
`<=>(sinx+cosx)(sin^2 x-sinx cosx+cos^2x)=1`
`<=>(sinx+cosx)(1-sinx cosx)=1` `(**)`
$\\$
Đặt `t=sinx+cosx`
`=\sqrt{2}.(\sqrt{2}/2 sinx+\sqrt{2}/2cosx)`
`=\sqrt{2}.(cos\ π/4sinx+sin\ π/4 cosx)`
`=\sqrt{2}sin(x+π/4)`
Vì `|sin(x+π/4)|\le 1``=>| t|\le \sqrt{2}`
$\\$
`\qquad t^2=(sinx+cosx)^2`
`=>t^2=sin^2x+cos^2x+2sinx cosx`
`=>t^2=1+2sinx cosx`
`=>sinx cosx ={t^2-1}/2`
$\\$
`(**)<=>t.(1-{t^2-1}/2)=1`
`<=>t. {2-t^2+1}/2=1<=>t(3-t^2)=2`
`<=>-t^3+3t-2=0<=>`$\left[\begin{array}{l}t=-2\ (loại)\\t=1\ (thỏa\ mãn)\end{array}\right.$
Với `t=1`
`<=>\sqrt{2}sin(x+π/4)=1`
`<=>sin(x+π/4)=1/\sqrt{2}=sin \ π/4`
`<=>`$\left[\begin{array}{l}x+\dfrac{π}{4}=\dfrac{π}{4}+k2π\\x+\dfrac{π}{4}=π-\dfrac{π}{4}+k2π\end{array}\right.$`(k\in ZZ)`
`<=>`$\left[\begin{array}{l}x=k2π\\x=\dfrac{π}{2}+k2π\end{array}\right.$`(k\in ZZ)`
Vậy phương trình đã cho có họ nghiệm:
`\qquad x=k2π; x=π/2+k2π\ (k\in ZZ)`