Đáp án:
e)\(x = \dfrac{{3 + 2\sqrt 2 }}{4}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 0;x \ne 1\\
A = \left[ {\dfrac{{2x + 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}} \right]:\left[ {\dfrac{{\sqrt x - 1 - x + 2}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}} \right]\\
= \dfrac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}{{ - x + \sqrt x + 1}}\\
= \dfrac{{x - \sqrt x }}{{ - x + \sqrt x + 1}}\\
b)Thay:x = \dfrac{{2 - \sqrt 3 }}{2} = \dfrac{{4 - 2\sqrt 3 }}{4} = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{4}\\
\to A = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2} - \sqrt {\dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{4}} }}{{ - \dfrac{{2 - \sqrt 3 }}{2} + \sqrt {\dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{4}} + 1}}\\
= \left( {\dfrac{{2 - \sqrt 3 }}{2} - \dfrac{{\sqrt 3 - 1}}{2}} \right):\left( { - \dfrac{{2 - \sqrt 3 }}{2} + \dfrac{{\sqrt 3 - 1}}{2} + 1} \right)\\
= \dfrac{{3 - 2\sqrt 3 }}{2}:\dfrac{{ - 3 + 2\sqrt 3 + 2}}{2}\\
= \dfrac{{3 - 2\sqrt 3 }}{{2\sqrt 3 - 1}}\\
c)A = \dfrac{{x - \sqrt x }}{{ - x + \sqrt x + 1}} = - \dfrac{{x - \sqrt x }}{{x - \sqrt x - 1}}\\
= - \dfrac{{x - \sqrt x - 1 + 1}}{{x - \sqrt x - 1}}\\
= - 1 - \dfrac{1}{{x - \sqrt x - 1}}\\
A \in Z\\
\to \dfrac{1}{{x - \sqrt x - 1}} \in Z\\
\Leftrightarrow x - \sqrt x - 1 \in U\left( 1 \right)\\
\to \left[ \begin{array}{l}
x - \sqrt x - 1 = 1\\
x - \sqrt x - 1 = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right) = 0\\
\sqrt x \left( {\sqrt x - 1} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 4\\
x = 0\\
x = 1\left( l \right)
\end{array} \right.\left( {do:\sqrt x + 1 > 0\forall x \ge 0} \right)\\
d)A = - 1 - \dfrac{1}{{x - \sqrt x - 1}}\\
= - 1 - \dfrac{1}{{x - 2\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} - \dfrac{5}{4}}}\\
= - 1 - \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} - \dfrac{5}{4}}}\\
Do:{\left( {\sqrt x - \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\
\to {\left( {\sqrt x - \dfrac{1}{2}} \right)^2} - \dfrac{5}{4} \ge - \dfrac{5}{4}\\
\to \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} - \dfrac{5}{4}}} \le \dfrac{4}{5}\\
\to - \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} - \dfrac{5}{4}}} \ge - \dfrac{4}{5}\\
\to - 1 - \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} - \dfrac{5}{4}}} \ge - \dfrac{9}{5}\\
\to Min = - \dfrac{9}{5}\\
\Leftrightarrow \sqrt x - \dfrac{1}{2} = 0\\
\to x = \dfrac{1}{4}\\
e)A = \dfrac{1}{3}\\
\to \dfrac{{x - \sqrt x }}{{ - x + \sqrt x + 1}} = \dfrac{1}{3}\\
\to 3x - 3\sqrt x = - x + \sqrt x + 1\\
\to 4x - 4\sqrt x - 1 = 0\\
\to \left[ \begin{array}{l}
\sqrt x = \dfrac{{1 + \sqrt 2 }}{2}\\
\sqrt x = \dfrac{{1 - \sqrt 2 }}{2}\left( l \right)
\end{array} \right.\\
\to x = \dfrac{{3 + 2\sqrt 2 }}{4}
\end{array}\)