Giải hệ phương trình : \(\left\{ \begin{array}{l}{x^2} + {y^2} + 4x + 2y = 3\\{x^2} + 7{y^2} - 4xy + 6 = 13\end{array} \right.\).
A.\(\left( {x;y} \right) = \left\{ {\left( {0; - 1} \right);\left( { - 4;3} \right);\left( {\frac{{ - 26 - 10\sqrt {13} }}{{13}};\,\,\frac{{2\sqrt {13} - 13}}{{13}}} \right);\left( {\frac{{ - 26 + 10\sqrt {13} }}{{13}};\,\frac{{ - 2\sqrt {13} - 13}}{{13}}} \right)} \right\}.\)
B.\(\left( {x;y} \right) = \left\{ {\left( {0;1} \right);\left( { - 4; - 3} \right);\left( {\frac{{ - 26 - 10\sqrt {13} }}{{13}};\,\,\frac{{ - 2\sqrt {13} - 13}}{{13}}} \right);\left( {\frac{{ - 26 + 10\sqrt {13} }}{{13}};\,\frac{{2\sqrt {13} - 13}}{{13}}} \right)} \right\}.\)
C.\(\left( {x;y} \right) = \left\{ {\left( {0; - 1} \right);\left( { - 4;3} \right);\left( {\frac{{ - 26 - 10\sqrt {13} }}{{13}};\,\,\frac{{ - 2\sqrt {13} - 13}}{{13}}} \right);\left( {\frac{{ - 26 + 10\sqrt {13} }}{{13}};\,\frac{{2\sqrt {13} - 13}}{{13}}} \right)} \right\}.\)
D.\(\left( {x;y} \right) = \left\{ {\left( {0;1} \right);\left( { - 4; - 3} \right);\left( {\frac{{ - 26 - 10\sqrt {13} }}{{13}};\,\,\frac{{2\sqrt {13} - 13}}{{13}}} \right);\left( {\frac{{ - 26 + 10\sqrt {13} }}{{13}};\,\frac{{ - 2\sqrt {13} - 13}}{{13}}} \right)} \right\}.\)