Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{matrix}\right.\)
pt thứ (1) <=> x2 + y2 = 1 - xy
pt thứ (2) <=> (x+y)(x2 + y2 - xy) = x+ 3y
Thế pt (1) vào Pt (2) ta được
(x+y).(1 - 2xy) = x + 3y
<=> x - 2x2y + y - 2xy2 = x + 3y
<=> -2xy. (x+y) - 2y = 0
<=> y. (1 + x(x+y)) = 0
<=> y = 0 hoặc x.(x+y) = - 1
+) y = 0 => x2 = 1 => x = 1 hoặc x = -1
Từ pt thứ 2 => x3= x => x = 0 hoặc x = 1 hoặc x = -1
Vậy x = 1; hoặc x = -1 và y = 0
+) x.(x+y) = - 1 => x2 + xy = -1.
Từ pt thứ 1 => y2 - 1 = 1 <=> y2 = 2 => y = \(\sqrt{2}\) hoặc y = - \(\sqrt{2}\) Thay y = \(\sqrt{2}\) vào x(x+y) = -1 => x=-.
Cho a,b,b là các số thực dương thỏa mãn a2+b2+c2=1. Tìm giá trị nhỏ nhất của biểu thức P= \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\)
Tìm x để P(x) là mệnh đề đúng:
a) P(x): "x2 - 5x + 4 =0"
b) P(x): "x2 - 5x + 6 =0"
c) P(x): "x2 - 3x > 0"
giải phương trình: \(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
Chứng minh trong 3 số (x-y)2,(y-z)2,(z-x)2 có ít nhất một số không lớn hơn \(\dfrac{x^2+y^2+z^2}{2}\)
Tính
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
b) \(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
M=(x-1)2.(x+2.). Với giá trị nào của x thì: a, M=0 ; b, M>0 ; c, M<0
Cho a,b,c >0 thỏa a+b+c=3.Chứng minh rằng
\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
Với $a,b$ là các số dương. Chứng minh :
\(a^3+b^3+abc\geq ab(a+b+c)\)
có 80 cái bánh xếp đều vào 8 hộp . mỗi hộp có hai ngăn. hỏi mỗi ngăn có bao nhiêu chiếu bánh?
toán lớp 3 nhé
1) \(\sqrt{2x^2+4x-1}>x+1\)
2)\(\sqrt{4x^2+101x+64}>2\left(x+10\right)\)
3)\(\sqrt{x^2-5x-14}>x-3\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến