Đáp án:
`x=(+-\sqrt{241}-5)/6`
Giải thích các bước giải:
`(2x+3)/(3x-2)-6/(3x+2)=(9x^2)/(9x^2-4)`
`ĐK:x ne +-3/2`
`<=>((2x+3)(3x+2)-6(3x-2))/(9x^2-4)=(9x^2)/(9x^2-4)`
`<=>(2x+3)(3x+2)-6(3x-2)=9x^2`
`<=>6x^2+13x+6-18x+12=9x^2`
`<=>6x^2-5x+18=9x^2`
`<=>3x^2+5x-18=0`
`<=>x^2+5/3x-6=0`
`<=>x^2+2.x.5/6=6`
`<=>x^2+2.x.5/6+25/36=241/36`
`<=>(x+5/6)^2=241/36`
`<=>x+5/6=(+-\sqrt{241})/6`
`<=>x=(+-\sqrt{241}-5)/6`
Vậy `S={(+-\sqrt{241}-5)/6}`