Giải phương trình :
\(2\cos3x.\cos x+\sqrt{3}\left(1+\sin2x\right)=2\sqrt{3}\cos^2\left(2x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\cos4x+\cos2x+\sqrt{3}\left(1+\sin2x\right)=\sqrt{3}\left(1+\cos\left(4x+\frac{\pi}{2}\right)\right)\)
\(\Leftrightarrow\cos4x+\sqrt{3}\sin4x+\sqrt{3}\sin2x=0\)
\(\Leftrightarrow\sin\left(4x+\frac{\pi}{6}\right)+\sin\left(2x+\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow2\sin\left(3x+\frac{\pi}{6}\right)\cos x=0\)
\(\Leftrightarrow\begin{cases}x=-\frac{\pi}{18}+k\frac{\pi}{3}\\x=\frac{\pi}{2}+k\pi\end{cases}\)
Vậy phương trình có 2 nghiệm \(x=-\frac{\pi}{18}+k\frac{\pi}{3}\) và \(x=\frac{\pi}{2}+k\pi\)
tìm giới hạn :
\(\frac{\left(-1\right)^{n+3}.cos\left(pi.n^2+\frac{1}{n}+sinn\right)}{n\left(n-1\right)}\)
gieo đồng thời 2 con xúc sắc tính xác suất để tổng số chấm trên 2 con xúc xắc bằng 8
Các điểm D, E tương ứng lấy trên các cạnh AC,AB của tam giác ABC mà DE không song song với CB. Lấy \(F\in BC,F\in ED\) sao cho
\(\frac{BF}{FC}=\frac{EG}{GD}=\frac{BE}{CD}\)
Chứng minh GF// \(l_a\)la phân giác của góc A
sin 2x + 2cos\(^2\)2x +3sinx + cosx -3=0
\(1+\sqrt{2}Sin\left(X+\frac{Π}{4}\right)+sin2x+cos2x=0\)
Cho hai đường tròn không đồng tâm (O;R) và (O’;R’) và một điểm A trên (O;R) . Xác định điểm M trên (O;R) và diểm N trên (O’;R’) sao cho \(\overrightarrow{MN}=\overrightarrow{OA}\).
Cho hình hộp ABCD.A'B'C'D'. Xác định điểm M trên đường chéo AC và điểm N trên đường chéo C'D sao cho MN//BD'. Khi đó, hãy tính tỉnh số \(\frac{MN}{BD'}\)
Giai pt sau :
a)sin^2 x - 3sinx - 4 = 0
b)√3sinx + cos = 2sin 2x
giai pt : \(\sqrt{1-cosx}=sinx,x\in\left[\pi;3\pi\right]\)
tìm giới hạn:
lim\(\frac{n^2+2n-3}{n\left(n+1\right)}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến