Giải phương trình căn(x^3+1/x+3)+căn(x+1)=căn(x^2−x+1)+căn(x+3)
giải phương trinh sau:
\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
đk: \(\left\{{}\begin{matrix}x+1\ge0\\x^2-x+1\ge0\\x+3\ge0\\xe-3\end{matrix}\right.\)
đặt \(\left\{{}\begin{matrix}a=\sqrt{x+1}\\b=\sqrt{x^2-x+1}\\c=\sqrt{x+3}\end{matrix}\right.\) (a,b >/ 0, c >0)
phương trình trở thành:
\(\dfrac{ab}{c}+a=b+c\Leftrightarrow ab+ac=bc+c^2\Leftrightarrow\left(a-c\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=c\\b+c=0\left(@@\right)\end{matrix}\right.\)
Vì b >/ 0 và c > 0 => b+c >0 nên phương trình (@@) vô nghiệm
\(\Rightarrow\sqrt{x+1}=\sqrt{x+3}\Leftrightarrow x+1=x+3\left(vn\right)\)
kết luận: ptvn
(không lẽ vô nghiệm thật hả trời T_T!!)
Tính 1/2+căn5+3+căn3/căn3−căn(6−2căn5)
\(\dfrac{1}{2+\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\sqrt{6-2\sqrt{5}}\)
Rút gọn các biểu thức sin^4α+cos^4α+2sin^2α.cos^2α
Rút gọn các biểu thức:
a)\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)\
b) \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Tìm GTNN m của biểu thức x^2_1 + x^2_2
Cho pt (ẩn x): \(x^2-\left(2m+3\right)x+m=0.\) Gọi x1 x2 là 2 nghiệm của phương trình đã cho. Tìm GTNN m của bt \(x_1^2+x_2^2\)
Hỏi số A là số nguyên tố hay hợp số, cho số A=n4+4n với n ∈ Z +
Cho số A=n4+4n với \(n\in Z^+\).Hỏi số A là số nguyên tố hay hợp số?
Chứng minh tam gác APH đồng dạng với tam giác ABQ
Cho đường tròn tâm O bán kính R không đổi, AB và CD là 2 đường kính bất kỳ của (O). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại M và N. Gọi P và Q lần lượt là trung điểm của AM và AN, H là trực tâm của tam giác BPQ.
a) Chứng minh tam gác APH đồng dạng với tam giác ABQ.
b) Chứng minh AH=\(\dfrac{R}{2}\)
c) hai đường kính AB, CD phải thỏa mãn điều kiện gì để diện tích tam giác BPQ nhỏ nhất?
Rút gọn (căna−2/căna+2−căna+2/căna−2)(căna−4/căna)
Rút gọn
a) với x>0 , x\(e\)1
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\)
b) với a>0,a\(e\)4
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
c)\(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\) với a>0 ,a\(e\)1
d)\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\) với x>1
Giải phương trình x^2+2(m+1)x+2m-1=0 khi m=3/2
cho phuong trinh :x^2+2(m+1)x+2m-1=0
a,giai phuong trinh m=3/2
b.chung minh pt luon co 2 nghiem phan biet voi moi gia tri
c,tim m de phuong trinh co 2 nghiem trai dau
Giải phương trình 2x^2 + (1 - căn5 )x + căn5 - 3 = 0
Giải phương trình: 2x2 + (1 - \(\sqrt{5}\)) x + \(\sqrt{5}\)- 3 = 0
Chứng minh rằng a/a+b + b/b+c + c/c+a < căn(a/b+c)+căn(b/c+a)+căn(c/a+b)
Cho a,b,c > 0 . CMR :
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)
Rút gọn Q=(1/cănx−1−2/xcănx−x+cănx−1):(1−cănx/x+1)
Cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\) (Với x\(\ge\)0, x\(e\)1)
a.Rút gọn Q
b. Chứng minh rằng Q\(\)>0
c.Tìm x để Q nguyên
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến