$x^{2}$ + $\frac{9x^2}{( x + 3)^2}$ = 7 (1)
ĐK: x$\neq$ -3
(1) <=> $\frac{x^2.(x+3)^2 +9x^2 - 7.(x+3)^2}{(x+3)^2}$ = 0
<=> $x^2.(x+3)^2 +9x^2 - 7.(x+3)^2$ = 0
<=>$x^2.(x^2 +6x+9) +9x^2 - 7.(X^2 + 6x+9)$ =0
<=>$X^4 + 6x^3 + 9x^2 + 9x^2 -7x^2-42x - 63$=0
<=> $X^4 + 6x^3 + 11x^2 -42x-63 =0 $
<=> $(x^2 -x-3).(x^2 + 7x + 21) = 0$
<=> \(\left[ \begin{array}{l}x^2 -x-3 =0\\x^2 + 7x + 21 = 0 ( vô . nghiệm)\end{array} \right.\)
<=> x = $\frac{1 + \sqrt[2]{13} }{2}$ hoặc x = $\frac{1 - \sqrt[2]{13} }{2}$