Giải phương trình \(\sin x + \sin 2x + \sin 3x + \sin 4x + \sin 5x + \sin 6x = 0\).
A.\(x = \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3}\), \(x = \pm \dfrac{{2\pi }}{3} + 2k\pi \).
B.\(x = \dfrac{{k2\pi }}{7}\), \(x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\), \(x = \pm \dfrac{{2\pi }}{3} + k2\pi \).
C.\(x = \dfrac{{k2\pi }}{3}\), \(x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\), \(x = + \dfrac{{\pi }}{7} + k2\pi \).
D.\(x = \dfrac{{k2\pi }}{7}+ k\pi \), \(x = \dfrac{2\pi }{3} + \dfrac{{k2\pi }}{3}\).