Đáp án:
\(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x(2x^2 - 5x + 3) = 0\)
\(\Leftrightarrow x(2x^2 - 2x - 3x + 3) = 0\)
\(\Leftrightarrow x[2x(x - 1) - 3(x - 1)] = 0\)
\(\Leftrightarrow x(x - 1)(2x - 3) = 0\)
\(\Leftrightarrow \left[\begin{array}{l} x=0\\x-1=0\\2x-3=0\end{array}\right.\Leftrightarrow \left[\begin{array}{l}x=0\\x=1\\x= \dfrac{3}{2}\end{array}\right.\)
Vậy `S = {0; 1; 3/2}`