`(4x^2+16)/(x^2+6) - 3/(x^2+1) = 5/(x^2+3) + 7/(x^2+5)`
`⇔ ((4x^2+16)(x^2+1)(x^2+3)(x^2+5)-3(x^2+6)(x^2+3)(x^2+5))/((x^2+6)(x^2+1)(x^2+3)(x^2+5))=(5(x^2+6)(x^2+1)(x^2+5)+7(x^2+6)(x^2+1)(x^2+3))/((x^2+6)(x^2+1)(x^2+3)(x^2+5))`
`⇒ (4x^2+16)(x^2+1)(x^2 + 5) - 3(x^2+6)(x^2+3)(x^2+5) = 5(x^2+6)(x^2+1)(x^2+5)+7(x^2+6)(x^2+1)(x^2+3)`
`⇔ 4x^8 + 49x^6 + 194x^4 + 239x^2 - 30 = 12x^6 + 130x^4 + 394x^2 + 276`
`⇔ 4x^8 + 37x^6 + 64x^4 - 155x^2 - 306 = 0`
Đặt `x^2 = t(t \ge 0)`
`⇔ 4t^4 + 37t^3 + 64t^2 - 155t - 306 = 0`
`⇔ (t-2)(4t^3 + 45t^2 + 154t + 153) = 0`
`⇔`\(\left[ \begin{array}{l}t-2=0\\4t^3+45t^2+154t+153=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}t=2(TM)\\t ∈ \mathbb{R}\end{array} \right.\)
`⇔ x^2 = 2`
`⇔ x = \pm\sqrt{2}`
Vậy `S = {\pm\sqrt{2}}`