Giải và biện luận bất phương trình sau
\(\left(m-1\right)x^2-2mx+3m-2>0\)
\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)
- Nếu \(m=1\) thì (1) có dạng \(-2x+1>0\) nên có nghiệm \(x<\frac{1}{2}\)
- Nếu \(me1\) thì (1) là bất phương trình bậc 2 với \(a=m-1\) và biệt thức \(\Delta'=-2m+5m-2\)
Trong trường hợp \(\Delta'\ge0\)
ta kí hiệu
\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\) ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\) \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)
Lập bảng xét dấu ta được
+ Nếu \(m\le\frac{1}{2}\) thì \(a<0\) ; \(\Delta'\le0\)
nên (1) vô nghiệm
+ Nếu \(\frac{1}{2}\) 0\)
\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\) hoặc \(x_2\)+ Nếu m>2 thì a>0; \(\Delta'<0\)nên (1) có tập nghiệm T(1)=R.Ta có kết luận :* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm* Khi \(\frac{1}{2}\) \(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) * Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)* Khi 1T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
+ Nếu m>2 thì a>0; \(\Delta'<0\)
nên (1) có tập nghiệm T(1)=R.
Ta có kết luận :
* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm
* Khi \(\frac{1}{2}\) \(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) * Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)* Khi 1T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) * Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)* Khi 1T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)
* Khi 1T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)
* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
\(mx^2+\left(m+1\right)x-2m\le0\)
\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\)
Giải bất phương trình sau :
\(x^2-\left|3x+2\right|+x-1>0\)
cho hàm số y = (2m-1)x + m+1 với m là tham số m khác 1/2 hãy tìm m trong mỗi trường hợp sau:
A) để đồ thị hàm số đi qua điểm m(-1;1)?
b) đồ thị hàm số cắt trục tung trục hoành lần lược tại A, B sao cho tam giác AOB là tam giác cân ?
(Toán 9 )
Cho tam giác ABC nội tiếp đường tròn , độ dài 3 cạnh AB, AC, BC lần lượt là 5;12;13 . Khoảng cách từ O đến dây AB là bao nhiêu ???
(giải hộ em với các anh chị ơi!!! )
Cho phương trinh
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=a\)
a) Giải phương trình với a=3
b) Tìm a để phương trình có nghiệm
giải pt lượng giác :
1. cos^2 + sinx +1 = 0
2. cosx - cos2x =1/2
3. sinx - căn của 3 cosx = 1 ( căn của mỗi 3 thôi nhé )
Biện luận
1. tìm m để pt [ x^2 -1] = m^4 - m^2 +1 cos 4 nghiem phan biet ( [ ] la gia tri tuyet doi nhe )
2. giai va bien luan (theo tham so m) bat pt : (m-1)x +2 / x-2 < m+1
3. tim m de pt co 4 ngiem phan biet
(m-1)x^4 - 2(m+2)x^2 + 2m +1 +0
cho đường thẳng (d) có phương trình x-y=0 và điểm M (2;1) . Viết phương trình tổng quát của đường thẳng đối xứng với đường thẳng (d) qua điểm M .
cho 2 đường thẳng (d1) : x+2y-3=0 và (d2) : 3x-y+2=0 . Viết phương trình đường thẳng (d) đi qua điểm P(3;1) và cắt (d1) , (d2) lần lượt ở A , B sao cho (d) tạo với (d1) và (d2) một tam giác cân có cạnh đáy là AB .
Giải phương trình sau
\(x^3-6x^2+11x-6=0\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến