a/ ĐKXĐ: $x\ne \pm 2,x\ne \dfrac{1}{2}$
$P\,=\left(\dfrac{3}{2x+4}+\dfrac{x}{2-x}+\dfrac{2x^2+3}{x^2-4}\right):\dfrac{2x-1}{4x-8}\\\quad=\left(\dfrac{3(x-2)}{2(x+2)(x-2)}-\dfrac{2(x+2)x}{2(x+2)(x-2)}+\dfrac{2(2x^2+3)}{2(x-2)(x+2)}\right).\dfrac{4(x-2)}{2x-1}\\\quad =\dfrac{3x-6-2x^2-4x+4x^2+6}{2(x-2)(x+2)}.\dfrac{4(x-2)}{2x-1}\\\quad =\dfrac{2x^2-x}{x+2}.\dfrac{2}{2x-1}\\\quad =\dfrac{x(2x-1)}{x+2}.\dfrac{2}{2x-1}\\\quad =\dfrac{2x}{x+2}$
$→$ ĐPCM
Vậy ta có điều phải chứng minh
b/ $4x^2-1=0\\↔(2x-1)(2x+1)=0\\↔\left[\begin{array}{1}2x-1=0\\2x+1=0\end{array}\right.\\↔\left[\begin{array}{1}2x=1\\2x=-1\end{array}\right.\\↔\left[\begin{array}{1}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{array}\right.$
mà theo ĐKXĐ: $x\ne \pm 2,x\ne \dfrac{1}{2}$
$→x=-\dfrac{1}{2}$
Với $x=-\dfrac{1}{2}$ (thỏa mãn điều kiện)
$→P=\dfrac{2.\left(-\dfrac{1}{2}\right) }{-\dfrac{1}{2}+2}=\dfrac{-1}{\dfrac{3}{2}}=-\dfrac{2}{3}$
Vậy $P=-\dfrac{2}{3}$ với $4x^2-1=0$
c/ $P<2\\↔\dfrac{2x}{x+2}<2\\↔\dfrac{2x}{x+2}-2<0\\↔\dfrac{2x-2(x+2)}{x+2}<0\\↔\dfrac{2x-2x-4}{x+2}<0\\↔\dfrac{-4}{x+2}<0\\→x+2>0\\↔x>-2\left(x\ne 2;\dfrac{1}{2}\right)$
Vậy $x>-2\left(x\ne 2;\dfrac{1}{2}\right)$ thì $P<2$