Đáp án:
a/ ta có (x-1)^2 >= 0 với mọi x => (x-1)^2 + 1 >= 1 với mọi x
dấu "= " xảy ra khi (x-1)^2 = 0 => x=1
vậy GTNN của ... là 1 tại x=1
b/ ta có (x+2)^2 >= 0 với mọi 2 => 3.(x+2)^2 >= 0 với mọi x => 3.(x+2)^2 - 2 >= -2 với mọi x
dấu "=" xảy ra khi 3.(x+2)^2 = 0 => x=-2
vạy GTNN .... là -2 tại x=-2
c/ ta có -(x-1)^2 =< 0 với mọi x => -(x-1)^2 + 5 =< 5 với mọi x
dấu = khi -(x-1)^2 = 0 => x=1
vậy GTLN ... là 5 tại x=1
d/ta có -5.(x+2)^2 =< 0 với mọi x => -5.(x+2)^2 -2 =< -2 với mọi x
dấu = khi -5.(x+2)^2 =0 => x=-2
Vậy GTLN.. là -2 tịa x=-2
e/ 2x^2 + 6x +11 = 2.(x^2 + 2.3/2.x +9/4) + 13/2 = 2. (x + 3/2)^2 + 13/2 >= 13/2 với mọi x
dấu = khi 2. (x + 3/2)^2 =0 => x= -3/2
Vậy GTNN... là 13/2 tịa x= -3/2
f/ -3x^2 + 3x -5 = -3. (x^2 - 2.1/2.x + 1/4) + 17/4 = -3.(x-1/2)^2 + 17/4 =< 17/4 với mọi x
dấu = khi -3.(x-1/2)^2 =0 => x= 1/2
Vậy GTLN ... là 17/4 tại x=1/2
Giải thích các bước giải: