Đáp án: (x; y) = (1; - 1)
Giải thích các bước giải: Điều kiện 2x + y ≥ 0; x - 2y + 1 ≥ 0
Đặt a = √(2x + y) ≥ 0; b = √(x - 2y + 1)
⇒ 5x + 10y - 3 = 4(2x + y) - 3(x - 2y + 1) = 4a² - 3b²
HPT tương đương với:
{ √(x - 2y + 1) = 5 - 3√(2x + y)
{ 2√(x - 2y + 1) - (5x + 10y - 3) - 12 = 0
⇔
{ b = 5 - 3a
{ 2b - 4a² + 3b² - 12 = 0
⇔
{ b = 5 - 3a
{ 2(5 - 3a) - 4a² + 3(5 - 3a)² - 12 = 0
{ 5 - 3a ≥ 0
⇔
{ b = 5 - 3a
{ 23a² - 96a + 73 = 0
{ a ≤ 5/3
⇔
{ a = 1; b = 2
{ a = 73/23; b = - 104/23 < 0 (loại)
⇔
{ √(2x + y) = 1
{ √(x - 2y + 1) = 2
⇔
{ 2x + y = 1
{ x - 2y + 1 = 4
⇔
{ x = 1;
{ y = - 1