Đáp án:
$\begin{array}{l}
E = \dfrac{{{5^{10}}{{.7}^1} - {{25}^5}{{.49}^2}}}{{{{\left( {225.7} \right)}^3} + {5^9}{{.14}^3}}}\\
= \dfrac{{{5^{10}}.7 - {5^{10}}{{.7}^4}}}{{{5^9}{{.7}^3} + {5^9}{{.2}^3}{{.7}^3}}}\\
= \dfrac{{{5^{10}}.7\left( {1 - {7^3}} \right)}}{{{5^9}{{.7}^3}.\left( {1 + {2^3}} \right)}}\\
= \dfrac{{5.\left( { - 342} \right)}}{{{7^2}.9}}\\
= \dfrac{{ - 190}}{{49}}\\
F = \dfrac{{{{\left( {{{3.4.2}^{16}}} \right)}^2}}}{{{{11.2}^{13}}{{.4}^{11}} - {4^9}{{.2}^{13}}}}\\
= \dfrac{{{{\left( {{{3.2}^{18}}} \right)}^2}}}{{{{11.2}^{13}}{{.2}^{22}} - {2^{18}}{{.2}^{13}}}}\\
= \dfrac{{{3^2}{{.2}^{36}}}}{{{{11.2}^{35}} - {2^{31}}}}\\
= \dfrac{{{{9.2}^{36}}}}{{{2^{31}}.\left( {{{11.2}^4} - 1} \right)}}\\
= \dfrac{{{{9.2}^5}}}{{175}}\\
= \dfrac{{288}}{{175}}
\end{array}$