$\\$
`1,`
`(3/2 x - 1)^3 = -125`
`-> (3/2 x-1)^3=(-5)^3`
`-> 3/2 x - 1=-5`
`-> 3/2 x = -5+1`
`-> 3/2 x = -4`
`->x=-4 : 3/2`
`->x=(-8)/3`
Vậy `x=(-8)/3`
$\\$
`2,`
`(1/2x + 2)^4 = 16`
Trường hợp 1 :
`-> (1/2 x +2)^4 = 2^4`
`-> 1/2x + 2=2`
`-> 1/2x = 2-2`
`-> 1/2x =0`
`->x=0: 1/2`
`->x=0`
Trường hợp 2 :
`-> (1/2x +2)^4=(-2)^4`
`-> 1/2x + 2=-2`
`->1/2 x=-2-2`
`-> 1/2x=-4`
`->x=-4 : 1/2`
`->x=-8`
Vậy `x=0` hoặc `x=-8`
$\\$
`3,`
`(2/3x -3)^5 = (2/3 x-3)^3`
`-> (2/3 x-3)^5 - (2/3 x - 3)^3=0`
`-> (2/3 x-3)^3 . (2/3 x - 3)^2 - (2/3x - 3)^3=0`
`-> (2/3 x-3)^3 .[(2/3 x - 3)^2 - 1]=0`
Trường hợp 1 :
`-> (2/3 x-3)^3=0`
`-> 2/3x -3=0`
`->2/3 x=0+3`
`-> 2/3 x=3`
`->x=3 : 2/3`
`->x=9/2`
Trường hợp 2 :
`-> (2/3 x - 3)^2-1=0`
`-> (2/3x -3)^2=0+1`
`-> (2/3x - 3)^2=1`
`-> (2/3 x-3)^2=1^2` hoặc `(2/3 x-3)^2=(-1)^2`
`-> 2/3x - 3=1` hoặc `2/3 x-3=-1`
`-> 2/3x=1+3` hoặc `2/3x=-1+3`
`-> 2/3x=4` hoặc `2/3x=2`
`->x=4:2/3` hoặc `x=2:2/3`
`->x=6` hoặc `x=3`
Vậy `x=9/2,x=6,x=3`