Đáp án:
$\begin{array}{l}
a)\left[ \begin{array}{l}
x \ge \sqrt 5 \\
x \le - \sqrt 5
\end{array} \right.\\
b)\left[ \begin{array}{l}
x \ge 3\\
x \le 2
\end{array} \right.\\
c)\left[ \begin{array}{l}
x \ge 6\\
x \le - 5
\end{array} \right.\\
d)\left[ \begin{array}{l}
x \ge 3\\
x \le - 1
\end{array} \right.\\
e)x \ne 3\\
f)x \ne - 1\\
g)\left[ \begin{array}{l}
x \ge 2\\
x < - 3
\end{array} \right.\\
h)\left[ \begin{array}{l}
x > 4\\
x \le - 3
\end{array} \right.
\end{array}$
Giải thích các bước giải:
Xin lỗi bạn do hệ thống bị hạn chế upload $5$ ảnh nên mình gửi bạn $5$ ảnh, những câu còn lại tương tự bạn nhé
$\begin{array}{l}
a)A = \sqrt {{x^2} - 5} \text{có nghĩa}\\
\Leftrightarrow {x^2} - 5 \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge \sqrt 5 \\
x \le - \sqrt 5
\end{array} \right.\\
b)D = \sqrt {{x^2} - 5x + 6} \text{có nghĩa}\\
\Leftrightarrow {x^2} - 5x + 6 \ge 0\\
\Leftrightarrow \left( {x - 3} \right)\left( {x - 2} \right) \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge 3\\
x \le 2
\end{array} \right.\\
c)C = \sqrt {{x^2} - x - 30} \text{có nghĩa}\\
\Leftrightarrow {x^2} - x - 30 \ge 0\\
\Leftrightarrow \left( {x - 6} \right)\left( {x + 5} \right) \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge 6\\
x \le - 5
\end{array} \right.\\
d)B = \sqrt {\left( {x - 3} \right)\left( {x + 1} \right)} \text{có nghĩa}\\
\Leftrightarrow \left( {x - 3} \right)\left( {x + 1} \right) \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge 3\\
x \le - 1
\end{array} \right.\\
e)E = \dfrac{1}{{\sqrt {{x^2} - 6x + 9} }} \text{có nghĩa}\\
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} - 6x + 9 \ge 0\\
\sqrt {{x^2} - 6x + 9} \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x - 3} \right)^2} \ge 0\left( {ld} \right)\\
{x^2} - 6x + 9 \ne 0
\end{array} \right.\\
\Leftrightarrow x \ne 3\\
f)F = \dfrac{1}{{\sqrt {{x^2} + 2x + 1} }} \text{có nghĩa}\\
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} + 2x + 1 \ge 0\\
\sqrt {{x^2} + 2x + 1} \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x + 1} \right)^2} \ge 0\left( {ld} \right)\\
{x^2} + 2x + 1 \ne 0
\end{array} \right.\\
\Leftrightarrow x \ne - 1\\
g)G = \sqrt {\dfrac{{x - 2}}{{x + 3}}} \text{có nghĩa}\\
\Leftrightarrow \dfrac{{x - 2}}{{x + 3}} \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge 2\\
x < - 3
\end{array} \right.\\
h)H = \sqrt {\dfrac{{x + 3}}{{x - 4}}} \text{có nghĩa}\\
\Leftrightarrow \dfrac{{x + 3}}{{x - 4}} \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 4\\
x \le - 3
\end{array} \right.
\end{array}$