Tử và mẫu lớn hơn không với mọi x
=> BpT tương đương \(!x^2-4x!+3\ge x^2+!x-5!\\ \) (1)
chia khoảng: các điểm tới hạn x={0,4,5}
TH1: \(\left(I\right)x\le0\)
(1) \(\Leftrightarrow x^2-4x+3\ge x^2+5-x\Leftrightarrow-3x\ge2\Rightarrow x\le\frac{-2}{3}\)
Kết hợp (I)=>\(x\le-\frac{2}{3}\) là nghiệm.
TH2: \(\left(II\right)0< x< 4\)
(1) \(\Leftrightarrow-x^2+4x+3\ge x^2+5-x\Leftrightarrow2x^2-5x+2\le0\Rightarrow\frac{1}{2}\le x\le2\)
Kết hợp (II) \(\frac{1}{2}\le x\le2\) là nghiệm
TH3:(III) \(4\le x< 5\)
(1) \(\Leftrightarrow x^2-4x+3\ge x^2+5-x\Leftrightarrow-3x\ge2\Rightarrow x\le\frac{-2}{3}\)
Kết hợp (iii) loại
TH4: x>=5
\(\Leftrightarrow x^2-4x+3\ge x^2+x-5\Leftrightarrow-5x\ge-8\Rightarrow x\le\frac{8}{5}\) loại
Kết luận:
\(\left[\begin{matrix}x\le-\frac{2}{3}\\\frac{1}{2}\le x\le2\end{matrix}\right.\)