$\\$
`g,`
`x . 3 1/4 + ( (-7)/6) . x -1 2/3 = 5/12`
`-> x . 13/4 - 7/6 . x - 5/3 = 5/12`
`-> x . (13/4 - 7/6) = 5/12 + 5/3`
`-> x . 25/12 = 25/12`
`->x=25/12 : 25/12`
`->x=25/12 . 12/25`
`->x=1`
Vậy `x=1`
$\\$
`h,`
`17/2 - |2x - 3/4| = (-7)/4`
`-> |2x - 3/4| = 17/2 - (-7)/4`
`-> |2x-3/4| = 41/4`
`->` \(\left[ \begin{array}{l}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=\dfrac{-41}{4}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}2x=\dfrac{41}{4}+\dfrac{3}{4}\\2x=\dfrac{-41}{4}+\dfrac{3}{4}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}2x=11\\2x=\dfrac{-19}{2}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x=11:2\\x=\dfrac{-19}{2}:2\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x=\dfrac{11}{2}\\x=\dfrac{-19}{4}\end{array} \right.\)
Vậy `x=11/2` hoặc `x=(-19)/4`
$\\$
`i,`
`(x+1/5)^2 +17/25 = 26/25`
`-> (x+1/5)^2=26/25 - 17/25`
`-> (x+1/5)^2=9/25`
`->` \(\left[ \begin{array}{l}(x+\dfrac{1}{5})^2=(\dfrac{3}{5})^2\\(x+\dfrac{1}{5})^2=(\dfrac{3}{5})^2\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=\dfrac{-3}{5}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x=\dfrac{3}{5}-\dfrac{1}{5}\\x=\dfrac{-3}{5}-\dfrac{1}{5}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x=\dfrac{2}{5}\\x=\dfrac{-4}{5}\end{array} \right.\)
Vậy `x=2/5` hoặc `x=(-4)/5`