Giải thích các bước giải:
$\lim\sqrt[3]{n^3-3n+2}-n$
$=\lim\dfrac{n^3-3n+2-n^3}{\sqrt[3]{n^3-3n+2}^2+n\sqrt[3]{n^3-3n+2}+n^2}$
$=\lim\dfrac{-3n+2}{\sqrt[3]{n^3-3n+2}^2+n\sqrt[3]{n^3-3n+2}+n^2}$
$=\lim\dfrac{-\dfrac 3n+\dfrac{2}{n^2}}{\sqrt[3]{1-\dfrac{3}{n^2}+\dfrac{2}{n^3}}^2+\sqrt[3]{1-\dfrac{3}{n^2}+\dfrac{2}{n^3}}+1}$
$=\dfrac{-0+0}{1+1+1}=0$