Đáp án:
Giải thích các bước giải:
`2.`
`\sqrt{x^2-9}-\sqrt{x-3}=0` `(đk:`$\left[\begin{matrix} x\le-3\\ x\ge3\end{matrix}\right.$`)`
`<=>\sqrt{x^2-9}=\sqrt{x-3}`
`<=>x^2-9=x-3`
`<=>(x-3)(x+3)-(x-3)=0`
`<=>(x-3)(x+3-1)=0`
`<=>(x-3)(x+2)=0`
`<=>`$\left[\begin{matrix} x=3(n)\\ x=-2(l)\end{matrix}\right.$
`S={3}`
`3.`
`\sqrt{x^2-25}-\sqrt{x+5}=0` `(đk:`$\left[\begin{matrix} x\le-5\\ x\ge5\end{matrix}\right.$`)`
`<=>\sqrt{x^2-25}=\sqrt{x+5}`
`<=>x^2-25=x+5`
`<=>(x-5)(x+5)-(x+5)=0`
`<=>(x+5)(x-5-1)=0`
`<=>(x+5)(x-6)=0`
`<=>`$\left[\begin{matrix} x=-5(n)\\ x=6(n)\end{matrix}\right.$
`S={-5;6}`
`4.`
`\sqrt{x^2-3x+2}-\sqrt{x-1}=0` `(đk:`$\left[\begin{matrix} x\le1\\ x\ge2\end{matrix}\right.$`)`
`<=>\sqrt{x^2-3x+2}=\sqrt{x-1}`
`<=>x^2-x-2x+2=x-1`
`<=>x(x-1)-2(x-1)-(x-1)=0`
`<=>(x-1)(x-2-1)=0`
`<=>(x-1)(x-3)=0`
`<=>`$\left[\begin{matrix} x=1(n)\\ x=3(n)\end{matrix}\right.$
`S={1;3}`
`#Devil`